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Table 5. Bond lengths with their standard deviations 

Bond M-O Distance cr 
Si-O A 1"646 A 0"014 A 
Si-O B 1"611 0"013 
Si-O C 1"580 0"018 
Si-O D 1"566 0"017 

Average: 1.601 0.008 * 
A1-O E 1.762 0.014 
Be-O F 1.608 0-012 

* Taken as the average of a divided by the square root  of  
the numbers  of independent  determinations,  as suggested by 
Smith & Bailey (1963). 

Smith & Bailey (1963) give as best values for Si-O 
and A1-O 1.61 A and 1.75 A respectively, and our val- 
ues agree within the experimental error. Only a few 
Be-O distances have been reported in the literature, 
but the value found in tugtupite falls within the interval 
given by International Tables for X-ray Crystallography 
(1962, p. 260). The question of the space group of soda- 
lite, Na8A16Si6024C12, is still open. In the paper of 
Pauling (1930) it was given as P~3n, while Barth (1932) 
argued for P43m. Later Saalfeld (1961) discussed the 
matter in relation to other members of the sodalite 
group and proposed the space group PTq3n. With the 
technique used in the early structure determinations 
it was not possible to determine the Si-O and A1-O 
distances with sufficient accuracy to decide whether the 
6 A1 and 6 Si are in two different special positions (P2~3n) 
or statistically distributed in a 12-fold position (PZ~3m). 

In view of the ordered arrangement of the cations 
of tugtupite it seems worth while to re-examine the 

structure of sodalite. We hope to be able to do so in 
the near future. 

The author wishes to thank H.Sorensen for sup- 
plying the crystals, H. Micheelsen and O.V.Petersen 
for the optical description and the specific gravity 
measurements, M. Mouritzen for the chemical analysis, 
and Chr. Romming and Norsk Regnecentral, Oslo, for 
the least-squares calculations. The other calculations 
were made possible by a grant from the Danish State 
Research Foundation. Special thanks are due to E. 
Krogh Andersen for many helpful discussions and 
good advice during the final stage of the structure 
determination. 
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The triangle in reciprocal space associated with a given structure invariant is defined and the concept 
of the equivalence of structure invariants is introduced. It is assumed that many of the interatomic 
triangles (especially the smaller ones) in a crystal structure are congruent to each other and that the 
triangles in each collection of congruent interatomic triangles are more or less randomly oriented in 
space. Under these assumptions the values of equivalent structure invariants are approximately equal, 
especially if the sides of the associated triangle are small. This result facilitates the solution of the 
problem of direct phase determination for structures satisfying our assumptions. 

1. Introduction 

The structure invariants are those entities whose values 
are uniquely determined by a crystal structure. They 
play a fundamental role in the problem of direct phase 

* Presented at the Suffern, N.Y., meeting of the American 
Crystallographic Association in February, 1965. 

determination. An important set of structure invariants 
consists of the linear combinations of the phases 

~al + ~o2+ ~a3, (1.1) 

in which the abbreviations 

q)l = ~0~ t , i=  1, 2, 3 ,  (1"2) 

have been used and the assumption 
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h l + h 2 + h 3 = 0  (1.3) 

has been made. The phase ~0 h of the normalized struc- 
ture factor Eh is defined by 

Eh= IEhl exp (/(Oh) N 
=(1/a~/O S Zj exp (2ztih. rj) (1.4) 

j = l  
where 

N 
an= Z7 Z~', (1.5) 

j = l  

N is the number of atoms in the unit cell, and Zj is the 
atomic number of the j th  atom the position vector of 
which is rj. 

We shall be primarily concerned with the following 
variant of (1.1): 

Vh~h2h3=lE1E2E3l cos (~1 +~02+~03) , (1"6) 

in which the abbreviations 

E,=Eh,, i = l ,  2, 3 (1.7) 

have been employed. Under the assumption (1.3), the 
expression (1.6), like (1.1), is evidently a structure in- 
variant. The elements of the set (1-6) are important 
because their values lead directly, by means of space- 
group dependent procedures for fixing the origin and 
enantiomorph described elsewhere (e.g. Karle & 
Hauptman, 1956, 1957), to the values of the phases 
~0 h. Hence the phase problem is solved if, by making use 
of the magnitudes of the normalized structure factors, 
IEhl, the values of (1.6) are determined. 

It is the purpose of this paper to study the structure 
of the set of invariants (1.6) in order to facilitate the 
direct determination of phase. We shall introduce the 
notion of the equivalence of two structure invariants. 
In this way the collection of invariants (1.6) is decom- 
posed into mutually exclusive subsets, the equivalence 
classes, having the property that any two invariants 
belonging to the same equivalence class are equivalent 
(approximately) to each other; two invariants chosen 
from different equivalence classes are not equivalent 
to each other. The importance of the concept of equi- 
valence lies in the fact that, under suitable conditions, 
equivalent structure invariants are equal (approxim- 
ately) to each other. Hence knowledge of the equivalence 
classes facilitates the solution of the problem of direct 
phase determination. 

2. The equivalence concept 

Def. 2.1. In view of (1.3), the invariant V'hlh2h3 deter- 
mines a triangle, Ahxh2h3, said to be the triangle associat- 
ed with Vhlhzh3, having a definite orientation in recipro- 
cal space and sides hb h2, h3. The lengths of the sides 
of this triangle are denoted by 

qhi=lh,], i = 1 , 2 , 3 .  (2.1) 

Def. 2.2. Two invariants Vh~hzh3 and Vk~k2k3 are said 
to be equivalent if their associated triangles Ah~h2h3 and 

ZJk_k2k3 a r e  congruent, i.e. if qht = qkt, i = 1, 2, 3. (Implicit 
• 1 . . . .  

m this defimtlon, naturally, is the assumption that 
hi  + hE + h3 = k l  + k2 + k 3  = 0 . )  

In application the notion of approximate equiva- 
lence is of particular importance. This means that 
Vhlh2h3 and Vklk2k3 are considered to be equivalent if 
qht and qki, i=  1, 2, 3, are approximately equal to each 
other so that the triangles Ahlh2h3 and Aklk2k3 are almost 
congruent. 

3. The structure invariants Vhlh2h3 

We begin with the following expression for the invari- 
ant (1.6) in terms of the interatomic vectors (Hauptman 
& Karle, 1962): 

IEhiEhzEh3l cos (~ah~ + ~Ph2 + fPh3) 
N 

l/t7 3/2 ~ Zuv  p COS 2zc (hi  • f u r - h 3  • rvp) 
iz4:v~-o4:l~ 

1 

+(a3/a32/2)(IEh~lZ+lEh212+lEh312--2) , (3.1) 

where 
Zuw=Z~,ZvZa , (3.2) 

r u v = r u - r v ,  rvp=rv - r  p . (3.3) 

We assume, without essential loss of generality (except 
for structures containing 'heavy atoms'), that all atoms 
are identical so that (3.1) reduces to 

1 
Vhlh2h3 - -  ~ (IEhxl2+ IEh212+ ]Eh3l 2 -  2) 

= ( N -  1) (N-2)N,  (COS 27C(hl . r a v - h  3 . rvp))av p (3.4) 

in which the average of the cosine is defined by 

(COS 2re(hi . r a y - h 3 ,  rvp))lzvp 
N 
S cos 2~z (hi • ruv-h3 • rvp) 

/z 4:v4=0 4:/z 
= ' . (3'5) 

N ( N - 1 ) ( N - 2 )  

Next we attempt to estimate the average (3.5) by 
replacing each term in the sum on the right hand side 
by its average value. Which average shall we choose? 
In order to answer this question we observe that there 
corresponds to each term in the sum an interatomic 
triangle having sides ruv, rvp, rpu since, in view of (3.3), 

rv, + rvp + rpa = 0.  (3"6) 

In short the sum in (3.5) is taken over all the inter- 
atomic triangles. Since the crystal structure is fixed, the 
magnitudes of the interatomic vectors and the angle 
between any pair of them, while perhaps not known, 
are nevertheless also fixed. These facts suggest that we 
fix the vectors hi, h3 and the magnitudes r and r' of the 
vectors r and r' respectively (to be identified later with 
a pair of adjacent interatomic vectors), as well as the 
angle (Or between r and r'. We imagine all orientations 
in space of the triangle determined by r, r', and (Or to be 

A C 20 - 8* 
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equally probable and, under these conditions, require 
the average value of cos 2rc(h~. r -  h3 • r ').  This average 
has already been found to be (Hauptman, 1965) 

(cos 2zc (hi. r - h 3 .  r ')) = B(z, t) 

- - V  7~ ~, t TM J42+1(2) (3"7) 
- ~z .=0  ~ . . . . . . .  

where 

z=2zc l/q~ 1 r2+2qha qh3 rr' cos :Pn cos ~Or+q~ 3 r '2 , (3.8) 

1 
t = - -  (27c 2 qhl qh3 rr'sin ~01~ sin :Pr) , (3.9) 

Z 

qh~ is given by (2.1), ~0n is the angle between h~ and -h3, 
and r, r', and ~0r have already been defined. Substituting 
from (3.7) into (3.4) we find 

1 
Vhlh2h3-- ~- (lEh112 + IEh212 + IEh312- 2) 

,,. ( N - 1 ) ( N - 2 )  (B(zuw, tuvp))u w (3.10) 
" N ~ 

where B(zuvp, tuv:) is obtained from (3.7); zuw and tu~ p 
are found from (3.8) and (3.9) respectively by replacing 
r by ru, = [ru,], r' by r~p = Irwl, and (Dr by ~Ouw, the angle 
between ru~ and rw; and the average of B(zuw, tuw ) 
is defined by 

N 
Z B(glavp , tuvp) 

ltff:v4:~?+-lt 
1 ( 3 . 1 1 )  (~(z~,  t.v~)).~= U(U-1)(U-2)  

We have yet to determine under what circumstances 
the identification of the average (3.7) with that ap- 
pearing in (3.4) is justified. In view of the meaning of 
the average in (3.7) we make the following: 

Hypothesis. Each interatomic triangle in the crystal 
structure belongs to a set of congruent interatomic 
triangles, and the interatomic triangles in each such set 
are randomly oriented in space (so that the number of 
congruent interatomic triangles in each such set is 
large). 

Under this hypothesis (3.10) is almost exactly cor- 
rect; the only source of error arises from the use in 
(3.5) of the finite sample, consisting of the existing 
interatomic triangles, from the hypothetical infinite 
population which is the finite union of families of 
randomly oriented triangles, the triangles in each fam- 
ily all being congruent to the same interatomic triangle 
while triangles chosen from different families are in- 
congruent to each other. In order to prove this it is 
sufficient to group the terms in the numerator of the 
right side of (3.5) into sets, the terms in each set cor- 
responding to all those interatomic triangles which are 
congruent to some specified one. Since the triangles 
in any such set are assumed to be randomly oriented in 
space (Hypothesis), the sum of the cosine terms cor- 
responding to each such set in the numerator of (3-5) 
is equal to the number of terms in the set multiplied by 

the appropriate average, B(zu~p, tuw ). In this way we 
arrive at (3.10) and (3.11). 

Even if our hypothesis is relaxed somewhat, in par- 
ticular for the larger interatomic triangles whose cor- 
responding terms in (3.5) would then tend to cancel 
each other and for which computation shows that the 
values of B(zuv p, tuw ) are relatively small (Hauptman, 
1964), it is clear that (3.10) retains approximate validity. 

There remains only the problem of showing that, for 
structures satisfying our hypothesis, the right hand 
side of (3.10) has the same value for equivalent struc- 
ture invariants. To this end let Vklklk3 be any structure 
invariant equivalent to  Vhlh2h3 SO that kl +kz-k-k 3 : 0  
and Iki[ =lh~[, i=  1, 2, 3. For this invariant (3.10) be- 
comes 

1 
Vklk2k3 - -  - - ~  (IEkllZ + Ek2lZ + IEk312- 2) 

.., ( N -  1) ( N - 2 )  , , 

..~ N ,  ( B ( z t t v p ,  ttsvp))luvp (3.12) 

t t 

where zuv p and tuv p are obtained from zu~ p and tuvp re- 
spectively by replacing hi by ka and h3 by k3, i.e. by 
replacing qhx by qkx, qh3 by qk3, and ~on, the angle be- 
tween hi and -h3, by ~ok, the angle between k~ and 
-k3.  Since Vhlhzh3 and Vkakzk3 are equivalent, the as- 
sociated triangles Ahlh2h3 and Akak2k3 are congruent so 
t ha t  qkx = qh l ,  qk3_ qh3, and (De_0n. Hence, in view of 
(3.8) and (3.9), Zuvp=Zu~p and tuvp=t,w for all/z, v, Q. 
The right hand sides of (3.10) and (3.12) are therefore 
equal. Since, for large N, the second terms of the left 
sides of (3.10) and (3.12) are relatively small, we arrive 
at the main result of this paper: 

Theorem. For structures satisfying our hypothesis, 
equivalent structure invariants are approximately equal 
to each other. 

It has already been noted that this result retains ap- 
proximate validity even if the hypothesis is relaxed. We 
remark next that the error made by relaxing the hypo- 
thesis is particularly small if the sides of the associated 
triangle are small. This fact becomes intuitively clear 
if we observe that interatomic triangles which are ap- 
proximately congruent 'appear' to be more accurately 
congruent when viewed from the low resolution implied 
by the small associated triangle hi, h2, h3. More rigor- 
ously, we note that two contributors to the sum in (3.5) 
which correspond to approximately congruent inter- 
atomic triangles remain almost unchanged in value 
under the small transformation which replaces ap- 
proximate congruence by exact congruence, provided 
that the associated triangle is small. Hence, in effect, 
interatomic triangles which are only approximately 
congruent may then be lumped into the same set, so 
that the conditions of our hypothesis are more accur- 
ately fulfilled. 

Conversely, the theorem tends to lose validity as the 
sides of the associated triangle increase since, in prac- 
tice, the hypothesis can never be exactly fulfilled so 
that two contributors to (3.5) corresponding to almost 
congruent interatomic triangles 'appear' to arise from 
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completely unrelated interatomic triangles if the as- 
sociated triangle is sufficiently large. More precisely, 
if the associated triangle is large, it is no longer per- 
missible to consider interatomic triangles which are 
only approximately congruent as belonging to the same 
set since the deviations from congruence are exagger- 
ated by multiplying by the large magnitudes Ihll and 
[h3l of (3.5). Hence the conditions of our hypothesis 
are not, in this case, approximately fulfilled even though 
interatomic triangles may be almost congruent. 

4. Concluding remarks 

The power of the direct methods of phase determina- 
tion depends on the extent to which a priori structural 
knowledge can be utilized. Thus, the earliest methods 
employed the positivity of the electron density to yield 
inequality relationships among the structure factors, 
while the essential discreteness of the electron density 
function later led to relationships of equality. Recently 
(Hauptman, 1964) it was shown how previous knowl- 

edge of partial or complete molecular structure could 
be used. In the present paper we have found new rela- 
tionships among the structure factors that are valid for 
structures satisfying our hypothesis. If, in addition, 
partial or complete knowledge of molecular structure 
is also available, (3.10) may be employed directly to 
obtain a first estimate of the structure invariant Vhlh2h3 , 
since the function B(z, t) has already been tabulated 
(Hauptman, 1964). Standard techniques may then be 
used to find the phases themselves. In future publica- 
tions it will be shown how to exploit other kinds of 
structural information as aids in phase determination, 
e.g. the tendency for interatomic distances to coincide, 
the existence of coplanar groupings in the crystal 
structure, etc. 
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The crystal structure of the high temperature form of BaO.B203 (m.p. 1095 + 5°C) was determined by 
conventional three-dimensional Patterson and electron-density syntheses. The heavy atom technique 
was used to establish the initial phases. BaO.B203 crystallizes in the trigonal system, space group 
R Sc, with 18 formula units per hexagonal cell. Unit-cell dimensions, referred to hexagonal axes, are 
a=b=7-235, c=39.192/~. Least-squares refinement with 498 independent reflections yielded a reli- 
ability index of 5.7 %, based on the observed data only. The anion in the structure is a nearly planar 
[]3306] 3- group constructed of three BO3 triangles each of which shares two of the three corners. The 
structure contains two crystallographically distinct barium atoms located in positions having point 
symmetries 32 and 3. About the barium in the 32 point symmetry position the oxygens are arranged in 
a trigonal prism. About the barium which lies in the 3 point symmetry position the oxygen coordination 
is ninefold. 

Introduction 

As part of a continuing program aimed at achieving a 
better understanding of the structural principles of an- 
hydrous borate compounds, the structure of the high 
temperature form of BaO.B203 was selected for study. 
Levin & McMurdie (1949) have investigated the BaO- 
B203 system and found that BaO.B203 exists as the 
primary phase in mixtures containing approximately 
56 to 78% BaO. They reported that this compound 

* National Research Council-National Bureau of Standards 
Postdoctoral Research Associate, 1964-1965. 

existed in two polymorphic forms, but the inversion 
temperature was not determined since the transition 
occurred over a range of 100°C to 400°C. The crystal- 
line high temperature form of BaO.B203 (m.p. 1095 
+ 5 °C) can be quenched and studied at room temper- 
ature. McMurdie & Levin found this crystalline form 
to be highly birefringent, uniaxial negative, with Ne = 
1"528 and No= 1"667. Preliminary unit-cell dimensions 
and possible space groups have been reported by Block, 
Perloff & Weir (1964), and the infrared spectrum has 
been investigated by Weir & Schroeder (1964), who 
suggested the presence of a [B306] 3- ring. 


